ANNAMALAI UNIVERSITY

BACHELOR OF SCIENCE B.Sc. PHYSICS DEGREE COURSE

(2021 - 2022)

The Course of Study and the Scheme of Examinations

S. No.	Part	Study Components		Ins. Hrs / week	Credit				
		Course Title				Title of the Paper	Maximum Marks		
		SEMESTER I					CIA	Uni. Exam	Total
1	I	Language	Paper-1	6	4	Tamil/Other Languages	25	75	100
2	II	English (CE)	Paper-1	6	4	Communicative English I	25	75	100
3	Ш	Core Theory	Paper-1	6	4	Mechanics	25	75	100
5	III	Allied -1	Paper-1	4	3	Chemistry I or Biochemistry I	25	75	100
6	III	Allied Practical	Practical-1	2	0		0	0	0
7	III	PE	Paper 1	6	3	Professional English I	25	75	100
8	IV	Environmental Studies		2	2	Environmental studies	25	75	100
		Sem. Total		36	20		150	450	600
		SEME					CIA	Uni. Exam	Total
8	1	STER II Language Paper-2		6	4	Tamil/Other Languages	25	75	100
9		English (CE)	Paper-2	6	4	Communicative English II	25	75	100
10	III	Core Theory	Paper-2	4	4	Heat and Thermodynamics	25	75	100
11	III	Core Practical	Practical-1	3	2	Practical - I	25	75	100
12	III	Allied-1	Paper-2	4	3	Chemistry II or Biochemistry II	25	75	100
13	III	Allied Practical	Practical-1	2	2	Practical-Allied	25	75	100
14	Ш	PE	Paper 1	6	3	Professional English II	25	75	100
15	IV	Value Education		2	2	Value Education	25	75	100
16	IV	Soft Skill		2	1	Soft Skill	25	75	100
		Sem. Total		36	25		225	675	900

ANNAMALAI UNIVERSITY

B.Sc. PHYSICS

SYLLABUS CBCS PATTERN (2021 - 2022)

SEMESTER I CORE PAPER - 1

MECHANICS

Course Objectives

- 1. To know the basics of vectors algebra and the dynamic of a system
- 2. To understand the dynamics of rigid bodies
- 3. To learn the concept of work, energy and collisions
- 4. To study the basics of elasticity
- 5. To expose the knowledge on gravitation and satellites

UNIT-1: Vectors and Dynamics

Introduction to Vectors - Vector algebra-Scalar and vector products-Gradient of a scalar field - Divergence of a vector field - Line integral - Curl of a vector field - Surface and volume integrals -Stoke's theorem - Gauss theorem of divergence - Green's theorem -Newton's laws of motion-Principle of conservation of momentum-Impulse-Projectile-Range on an inclined plane- Range and Time of fight down an inclined plane-Two body problem and the reduced mass-Centre of mass-Centre of gravity-Centre of gravity of a solid tetrahedron-Analytical problems solving.

UNIT-2: Dynamics of rigid bodies

Rotational kinetic energy and moment of inertia-Angular acceleration and angular momentum-Law of conservation of angular momentum-Torque-Work done by a torque-Theorem of perpendicular and parallel axes-Moment of inertia of a thin uniform rod-rectangular lamina-uniform circular disc (through the centre of gravity for all)-Determination of acceleration due to gravity-Compound pendulum-Centre of suspension and centre of oscillation are interchangeable- Bifilar pendulum (parallel threads)- Analytical problems solving.

UNIT-3: Work, Energy & Collisions

Work-Energy Theorem – Conservative forces - Potential Energy-Force as gradient of potential energy-Principle of conservation of energy of a freely falling body.

Elastic and inelastic collisions-Coefficient of restitution-Oblique impact of a smooth sphere on a fixed smooth plane-Oblique impact of two smooth spheres-Loss of kinetic energy due to oblique impact- Analytical problems solving.

UNIT-IV: Elasticity

Elastic moduli-Hooke's law- Relation between elastic constants — Poisson's Ratio - Work done in stretching twisting a wire-Twisting couple on a cylinder-Rigidity modulus of a wire by Torsional pendulum-Rigidity modulus of a rod by Static torsion method-Bending of beams -Expression for bending moment — Cantilever -Expression for depression at the loaded end- Non-uniform bending-Determination of young's modulus pin & microscope and Koenig's method- Uniform bending-Expression for elevation — Experiment to determine young's modulus using optic lever method- Analytical problems solving,

UNIT-V: Gravitation

Law of gravitation-Acceleration due to gravity- Inertial mass and gravitational mass-Gravitational field-Gravitational potential-Gravitational potential energy- Potential and field due to spherical shell and solid sphere.

Kepler's Laws-Basic principles of rocket motion-Rocket Equation, thrust and acceleration-Escape velocity-Orbital velocity-Satellite in circular orbit-Geosynchronous orbits-Weightlessness- Basic idea of global positioning system (GPS)-Physiological effects on astronauts- Analytical problems solving.

Course outcomes

- 1. After studied unit-1, the student will be able to know fundamentals of vectors and able to formulate the expression for projectiles.
- 2. After studied unit-2, the student will be able to study the dynamics of rigid bodies in terms of moment inertia and also able to find the moment of inertia of different systems.
- 3. After studied unit-3, the student will be able to define work, energy and also able to understand the oblique impact between smooth spheres.
- 4. After studied unit-4, the student will be able to learn the elastic property of the solid materials and also derive the relation between elastic moduli.
- 5. After studied unit-5, the student will be able to explain the concept of gravitation and able to know the principles of rocket and satellite.

Text Books

Unit 1

1. R. Murugeshan, Mechanics and Mathematical methods, S.Chand&Co.Ltd, New Delhi, 2016

Unit 2

1. BrijLal and N. Subrahmanyam, Properties of Matter, S.Chand&Co.Ltd, New Delhi, 2002

Unit 3

- 1. M. Narayanamurti and N.Nagartnam, Dynamics, The National Publishing Company, Chennai, 2005.
- 2. Prof. D.S. Mathur revised by Dr.P.S. Hemne, Mechanics, S. Chand and Company Limited, 2014

3. R. Murugeshan, Mechanics and Mathematical methods, S.Chand&Co.Ltd, New Delhi, 2016

Unit 4

- 1. R. Murugeshan, Properties of Matter and Acoustics, S.Chand&Co.Ltd, New Delhi, 2016
- 2. BrijLal and N. Subrahmanyam, Properties of Matter, S.Chand&Co.Ltd, New Delhi, 2002
- 3. K. Ilangovan, Properties of Matter and Sound, Ananda Book Depot, Chennai, 2018.
- 4. J.Jayachitra and M. Gunasekaran, Properties of Matter and Acoustics, KRU Publications, Kumbakonam, 2007.

Unit 5

- 1. BrijLal and N. Subrahmanyam, Properties of Matter, S.Chand&Co.Ltd, New Delhi, 2002
- 2. Prof. D.S. Mathur revised by Dr.P.S. Hemne, Mechanics, S. Chand and Company Limited, 2014

Reference Books

- 1. Sathyaprakash, Mathematical Physics, Sultanchand& Sons, New Delhi, Revised Ed.
- 2. Resnick, Halliday and Walker, Physics, 8/e. 2008, Wiley
- 3. J.W. Jewett, R.A. Serway ,Physics for scientists and Engineers with Modern Phys., , 2010, Cengage Learning
- 4. R.P.Feynman, R.B.Leighton, M.Sands ,Feynman Lectures, Vol. I, , 2008, Pearson Education
- 5. M.R. Spiegel, Theoretical Mechanics, , 2006, Tata McGraw Hill.
- 6. C.Kittel, W.Knight, et.al, Mechanics, Berkeley Physics, vol.1. 2007, Tata McGraw-Hill.
- 7. G.R. Fowles and G.L. Cassiday, Analytical Mechanics, 2005, Cengage Learning.
- 8. Higher Secondary Plus 1 and Plus 2 Physics Books- TN State Board and NCERT Books.

E-Materials

- 1. https://sites.google.com/a/euhsd.org/physics/
- 2. https://en.wikipedia.org/wiki/Euclidean_vector
- 3. https://www.youtube.com/watch?v=sXKiAKn0WCM
- 4. https://en.wikipedia.org/wiki/Center of mass
- 5. https://en.wikipedia.org/wiki/Moment_of_inertia
- 6. https://www.toppr.com/guides/physics/system-of-particles-and-rotational-dynamics/moment-of-inertia/
- 7. https://byjus.com/physics/work-energy-power/
- 8. https://www.physicsclassroom.com/class/energy
- 9. https://en.wikipedia.org/wiki/Bending moment
- 10. https://www.youtube.com/watch?v=CQGlgu-8dmA (Tamil video)
- 11. https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
- 12. https://www.youtube.com/watch?v=kxkFaBG6a-A
- 13. http://hyperphysics.phy-astr.gsu.edu/hbase/rocket2.html
- 14. https://en.wikipedia.org/wiki/Global_Positioning_System
- 15. https://study.com/academy/lesson/the-global-positioning-system-and-its-uses.html
- 16. https://www.nasa.gov/centers/johnson/pdf/584739main_Wings-ch5d-pgs370-407.pdf

CORE PAPER - 2 HEAT AND THERMODYNAMICS

Course Objectives

- 1. Get clear idea about the specific heat capacity and kinetic theory of gases
- 2. Knowledge about the conduction, radiation and low temperature physicswill be gained
- 3. To know the thermodynamic system and its laws
- 4. To learn the concept of entropy and Mawell'sthermodynamical relations
- 5. To study the basic ideas of statistical mechanics

Unit-1: Specific Heat & Kinetic theory of gases

Specific heat capacity-Principle of method of mixtures-Specific heat capacity of liquid by method of mixtures-Newton's law of cooling-Specific heat capacity of a liquid by the method of cooling- Specific heat capacity of a liquid by Callender and Barne's method-Specific heat capacity of gases- Meyer's relation between C_P and C_v.

Kinetic theory of gases-Expression of pressure of gas-Boyle's law-Charle's law-Perfect gas equation- Mean free path-Expression for mean free path-Maxwell's velocity distribution law-Transport phenomena-Diffusion-Law of equipartition energy- Application to specific heat of gases.

Unit-2: Transmission of Heat & Low Temperature Physics

Conduction-Coefficient of thermal conductivity-thermal conductivity of a good conductor-Forbe's method – thermal conductivity of a poor conductor -Lee's disc method-Black body radiation-Stefan -Boltzmann law-determination of Stefan's constant -laboratory method-Solar energy-Solar cooker-solar constant- temperature of the Sun.

Joule-Kelvin effect-Porous plug experiment- liquefaction of hydrogen- liquefaction of helium-Kammerling-Onne's method-Helium I and II -Lambda point-Superconductivity-Type I and II superconductors -Meissner effect-applications of superconductors.

UNIT-3: Thermodynamics

Thermodynamic system- Zeroth law, First and Second law of thermodynamics -Carnot's theorem-Statement and proof-Otto (petrol) engine and Diesel engine -Construction, working and efficiency- Thermodynamic scale of temperature- Thermodynamic and perfect gas scale.

UNIT-4: Entropy & Enthalpy

Entropy- Change in entropy in a reversible/irreversible process-Temperature entropy diagram -Entropy of perfect gas- Third law of thermodynamics-Maxwell's thermo dynamical relations--Clapeyron latent heat equation-Clausius latent heat equation-Helmholtz and Gibb's free energy-Enthalpy.

UNIT-5:Statistical Mechanics

Phase space- Macrostate and Microstate- Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of velocity -Quantum statistics - Fermi-Dirac distribution law - electron gas - Bose-Einstein distribution law - photon gas - comparison of three statistics-Ensembles-Micro, canonical and grand canonical ensembles.

Text Books

Unit 1 to Unit 5

- 1. D. Jayaraman, K. Ilangovan, Thermal Physics & Stastical Mechanics, S. Viswanathan, Printers & Publishers Private Ltd, Chennai, 2016.
- 2. BrijLal and N Subrahmanyam, Heat Thermodynamics and Statistical Physics, S Chand & Company Pvt Ltd, New Delhi, 2016.

Reference Books

- 1. D.S. Mathur, Heat and Thermodynamics, S Chand & Company Pvt Ltd, 2008.
- 2. J.B. Rajam, Heat and thermodynamics, S Chand & Co., New Delhi, 1990.
- 3. R Murugeshan and KiruthigaSivaprasad, Thermal Physics, S Chand & Co., New Delhi, 2002.
- 4. Gupta and Kumar, Elements of Statistical Mechanics, PragatiPrakashan, Meerut, 2000.
- 5. SathyaPrakash and J P Agarwal , Statistical Mechanics , KedarNath& Ram Nath& Co., Meerut, 2002.

E- Materials

- 1. https://www.e-booksdirectory.com/details.php?ebook=1778
- 2. https://www.ugrad.math.ubc.ca/coursedoc/math100/notes/diffegs/cool.html
- 3. https://www.youtube.com/watch?v=JLU0phEP7h4
- 4. https://www.youtube.com/watch?v=Q7qzc7-flMY (Tamil Video)
- 5. https://www.youtube.com/watch?v=Atnjo7dD_bA
- 6. https://www.youtube.com/watch?v=iENG9VnBeP0
- 7. http://www.iiserpune.ac.in/~bhasbapat/phy221_files/Lee's%20Method.pdf
- 8. https://vikaspedia.in/energy/energy-production/solar-energy/solar-cookers
- 9. https://www.youtube.com/watch?v=ZWD11-oZLJQ (Tamil Video)
- 10. https://www.youtube.com/watch?v=6IRXVZKH6WQ
- 11. https://www.youtube.com/watch?v=DPjMPeU5OeM
- 12. https://statisticalphysics.openmetric.org/equilibrium/ensembles.html

Course Out Comes

1. After studied unit-1, the student will be able to know fundamentals specific heat capacity and able to explain the kinetic theory of gases.

- 2. After studied unit-2, the student will be able to describe the conduction and radiation of heat and also able to study the Joule-Kelvin effect based on the low temperature phenomena and its applications.
- 3. After studied unit-3, the student will be able to cite the laws of thermodynamics and their applications.
- 4. After studied unit-4, the student will be able to explore the equations governing second law of thermodynamics and entropy.
- 5. After studied unit-5, the student will be able to explain Phase-space, micro and macrostates and able to distinguish MB,FD and BE statistics.

CORE PRACTICAL-1

List of Experiments (Any 15 Experiments only)

- 1. Compound Pendulum -Determination of 'g' and 'k'.
- 2. Young's modulus -non uniform bending -Pin and microscope.
- 3. Young's modulus -uniform bending -Optic lever.
- 4. Young's modulus cantilever- depression- dynamic method-Mirror, Scale and Telescope.
- 5. Rigidity modulus -Torsional Pendulum -without masses.
- 6. Rigidity modulus and moment of inertia -Torsional Pendulum -with identical masses.
- 7. Rigidity modulus -Static torsion -Mirror, scale and telescope.
- 8. Surface tension and Interfacial surface tension drop weight method.
- 9. Coefficient of viscosity of liquid-Graduated burette -Radius of capillary tube by using microscope.
- 10. Thermal conductivity of a poor conductor -Lee's disc method.
- 11. Specific heat capacity of liquid -Newton's law of cooling.
- 12. Sonometer -Frequency of Tuning fork.
- 13. Sonometer -Relative density of a solid and liquid.
- 14. Focal length -R and μ of a convex lens [focal length i) u-v and ii) conjugate foci method; Radius of curvature by telescope method].
- 15. Focal length -R and μ of a concave lens [focal length i) in contact and ii) auxiliary lens method; Radius of curvature by Boy's method].
- 16. Spectrometer -Solid prism- Refractive indexof material of a prism.
- 17. Spectrometer- Hollow prism Refractive index of a liquid.
- 18. Potentiometer -Calibration of low range voltmeter.
- 19. Potentiometer Internal resistance of a Cell.
- 20. Post office box -Temperature coefficient of resistance of a coil.

Text Books

- 1. C.C. Ouseph, U.J. Rao, V. Vijayendran, Practical Physics and Electronics, S. Viswanathan, Printers & Publishers Private Ltd, Chennai, 2018.
- 2. M.N.Srinivasan, S. Balasubramanian, R.Ranganathan, A Text Book of Practical Physics, Sultan Chand & Sons, New Delhi, 2015.

Reference Books

- 1. Samir Kumar Ghosh, A Textbook of Advanced Practical Physics, NCBA, Kolkatta, 2000.
- 2. D. Chattopadyay, P.C.Rakshit, An Advanced Course in Practical Physics, NCBA, Kolkatta, 2011
- 3. C.L.Arora, B.Sc., Practical Physics, S. Chand and Company., New Delhi.
- 4. D.P.Khandelwal, A Laboratory Manual of Physics for Undergraduate Classes, VaniPublications.
- 5. B.Saraf et al, Physics through Experiments, Vikas Publications.
- 6. Harnaam Singh., B.Sc., Practical Physics, S. Chand and Company., New Delhi.
- 7. D C Tayal, University Practical Physics, Himalaya Publishing House.
- 8. Gupta & Kumar, Practical Physics, Pragatiprakashan, Meerut